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Experiments were carried out in an axisymmetric turbulent jet from 2 to 6 diameters
downstream at exit Reynolds numbers of 78 400, 117 600, and 156 800. Data were
collected using the 138 hot-wire probe constructed by Citriniti & George (2000).
The proper orthogonal decomposition (POD) was then applied to a double Fourier
transform in time and azimuthal direction of the two-point velocity correlation
tensor. Azimuthal mode-0, which dominated the dynamics at x/D =3 in the previous
experiments, dies off rapidly downstream towards a non-zero value. For the higher
azimuthal modes, the peak shifts from mode-6 towards lower azimuthal mode
numbers with increasing downstream distance, until the peak is at mode-2 by the end
of the potential core. The POD eigenspectra collapse in similarity variables for the
mixing layer at all downstream positions, and are nearly independent of Reynolds
number. Reconstruction of the full-field streamwise velocity component using the
dominant POD modes shows clearly the evolution of the flow with downstream
position, from ‘volcano-type’ eruptions at 2 to 3 diameters downstream to a ‘propeller-
like’ pattern where the number of blades diminishes downstream.

1. Introduction
The existence of large-scale structures in turbulent flows has been recognized for

a number of years. It has also long been suspected that these large-scale structures
play important roles in many applications: chemical mixing, noise control, momentum
transfer, drag reduction, combustion enhancement, etc. Since the large-scale structures
are embedded inside the turbulent motions, it is very difficult to identify and extract
them from the chaotic turbulent flows. The efforts over the past few decades, especially
as applied to axisymmetric jets, have been the subject of many reviews (e.g. Cantwell
1981; Hussain 1983; Holmes, Lumley & Berkooz 1996; Citriniti & George 2000).
The last of these used a proper orthogonal decomposition (POD) to extract the most
energetic structures of the flow, and similar methodology will be used here and in
Part 2 of this paper (Gamard, Jung & George 2004).

A particular advantage of the POD is that it leads directly to mathematical models.
Its first application to the axisymmetric mixing layer without any controlled excitation
showed that a low-dimensional description of the time-dependent velocity field was
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possible (Leib, Glauser & George 1984). The much more extensive experiments of
Glauser & George (1987) (see also Glauser 1987), who applied the POD to the radial
direction of a jet mixing layer at 3 diameters downstream, showed that only the
first few POD modes were necessary to capture most of the energy, with more than
40% in the first POD mode alone. That work described the azimuthal and temporal
decomposition as well.

There have been a number of recent applications of the POD to turbulent free
shear flows, all using rakes of probes to obtain the necessary cross-spectral data at
a large number of locations. Ukeiley & Seiner (1998) and Ukeiley, Seiner & Ponton
(1999) were the first to investigate the downstream evolution of the POD modes
in the shear layer of an axisymmetric jet, similar to this study although at much
higher Mach numbers. They showed that the behaviour of the eigenspectra changed
drastically with downstream position. Taylor, Ukeiley & Glauser (2001) later applied
linear stochastic estimation methods to the same database. Gordeyev & Thomas
(2000) focused on the similarity region of a turbulent planar jet, while Delville et al.
(1999) reported a thorough examination of the POD modes in a plane mixing layer.
The second part of the latter study (Ukeiley et al. 2001) used the POD eigenfunctions
to build low-order dynamical systems models to reconstruct the velocity field. The
application of the POD to the near field of the jet prior to our study is reviewed in
detail in Glauser et al. (2000).

In an abbreviated version of the experiment reported herein, Citriniti & George
(2000) examined the dynamics of the jet mixing layer from instantaneous realizations
of the streamwise velocity field at x/D = 3 using 138 simultaneously sampled hot-
wire anemometer probes. The simultaneous measurements at many points allowed the
POD eigenfunctions to be projected back onto a slice of the flow, so the instantaneous
flow could be reconstructed as a whole, or in part, one piece at a time. These velocity
reconstructions using the POD provided evidence for both azimuthally coherent
‘volcano-like’ events that contained most of the energy, and for counter-rotating,
streamwise vortex pairs (or ribs) in the region between successive azimuthally coherent
structures.

Both the Glauser and Citriniti experiments were performed at only a single
downstream position and single Reynolds number. Our goal in this study is
to investigate whether and how the modal character of the flow changed with
downstream position and jet exit Reynolds number. In this experiment, data are
presented at three Reynolds numbers, ReD , of 78 400, 117 600, and 156 800 (based on
jet exit velocity and diameter) at downstream positions ranging from x/D = 2.0 to
6.0 in increments of 0.5 diameters, all at low Mach numbers ( < 0.07). This covers the
spatial extent over which the mean velocity profile evolves from a top-hat to a nearly
fully developed jet profile. Part 2 (Gamard et al. 2004) will present an extension of
this work to the far-field region of the jet.

2. Experimental apparatus
2.1. The axisymmetric jet

The experiments were carried out in the turbulent mixing layer generated by an
isothermal, non-reacting, incompressible, and axisymmetric jet. The jet was enclosed
in a very large 4.3×4.6×11.4 m3 shield to minimize the effects of boundary conditions
on the flow (Hussein, Capp & George 1994, Appendix B). This jet facility was used
previously by Citriniti & George (2000) (as well as Glauser & George 1987) and
has also been described thoroughly in Jung (2001). Air flow is generated from a
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Figure 1. Schematic and photo of the jet facility.

blower-driven jet, figure 1, and exits through a fifth-order polynomial nozzle of
9.8 cm diameter. The turbulence intensity at the jet exit varied between 0.23% and
0.5%, depending on the jet velocity. The exit profile was a top-hat with a boundary
layer of 1.2 mm based on δ99.

2.2. The probe array

In order to be able to reconstruct the velocity from the POD eigenspectra, it
is necessary to acquire all the signals simultaneously to avoid losing the phase
information. For this purpose, Citriniti & George (2000) designed an array of hot
wires with enough resolution to decompose the flow field at a fixed downstream
position. Using the data of Glauser & George (1987) (or Glauser & George 1992)
and the criteria for the azimuthal resolution necessary to avoid any azimuthal aliasing,
Citriniti & George (2000) designed a probe array with 138 hot wires in six concentric
circles, see figure 2. Using data from this probe array, the POD can resolve up to six
eigenspectra in the radial direction, and up to 16 azimuthal modes.

An array of hot wires will still leave some unresolved scales that will be aliased
into the measured signal. To avoid this, Citriniti & George (2000) used very long
wires (1 cm long) oriented in the azimuthal direction to act as spatial filters. Since the
signals from the turbulent flow are filtered out by the long sensing hot wire before
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Figure 2. The 138 hot-wire probe array. Dimensions in cm.

they are sampled, a significant portion of the energy contained in scales smaller than
the wires is not aliased into the lower modes. This procedure and analysis is described
in detail in Citriniti & George (1997).

2.3. Anemometers and sampling

The long wires also acted as anti-aliasing filters in time with a nominal roll-off of
approximately 1 kHz under the flow conditions. The sampling frequency of the signal
was set up at 4 001.6 Hz, higher than the Nyquist criterion, ensuring no temporal
aliasing. A confirming check by sampling at 142 kHz was done.

The anemometers were designed in the laboratory and optimized for this specific
experiment. Their circuit performance and noise properties compared to industry
standards (see Woodward, Ewing & Jernqvist 2001; Woodward 2001, for details).
Data were acquired by a Microstar Laboratories DAP 5200a board which sampled
simultaneously all 138 probes using a sample/hold amplifier, SHC298, in each
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Figure 3. Mean velocity contours at ReD= 117 600 (exit velocity of 18 m s−1), for different
downstream positions: (a) x/D = 2, (b) 4, (c) 6.

anemometer board. Statistics were computed from 388 blocks of 4096 samples
from each probe, corresponding to 400 s record length each, giving a variability of
approximately 5% in the cross-spectral estimates.

3. Statistical properties
3.1. Mean velocity profiles

Contour maps of the mean velocity field normalized by the exit velocity for a
Reynolds number of 117 600 are presented at three downstream positions in figure 3.
They show that the mean velocity field is axisymmetric to within the statistical error,
thus confirming that an axisymmetric shear layer has been formed. The plots also
show that much of the velocity field is within the bounds of the probe array in the
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Figure 4. Normalized streamwise velocity along a radial line in the 138-wire probe array
at ReD= 156 800. (a) Mean velocity. (b) Turbulence intensity. Also included are normalized
profiles of Glauser (1987).

near jet, even for the x/D =6 position where the outermost ring only extends to the
position where the mean velocity is 36% of the centreline velocity.

Normalized mean streamwise velocity profiles are shown in figure 4(a) for the
nine measured positions at the highest Reynolds numbers. The radial coordinate
is normalized by the downstream distance, x, from the exit plane of the jet. These
profiles were computed using probes 2, 5, 10, 16, 25, 37, 51, 67, 83, 99, 115, and 131
of the hot-wire probe array (see figure 2). The normalized mean velocity profile of
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Glauser (1987), made in the same jet using 1 mm long, 5 µm wires, is also shown for
comparison.

3.2. Turbulence intensity profiles

The turbulence intensity profiles shown in figure 4(b) collapse surprisingly well given
that the filtering characteristics of the long wires change relative to the turbulence
scales as the flow evolves downstream relative to the fixed array. The turbulence
intensity based on the jet exit velocity is about 3% to 5% near the centreline of the jet,
and the maximum turbulence intensity is about 13% to 14% at the peak near
(r−R)/x =0. The measurements are slightly lower than those of Glauser (1987), which
were made in the same facility (at ReD = 110 000) with small hot wires. This is exactly
as expected from the reduced temporal and spatial resolution of the long wires.

A note of caution is in order here: the long wires of the sensing element introduce
deliberately both spatial and temporal filtering at the scales of the inertial subrange
to remove small-scale energy for the purpose of minimizing aliasing in the spatial
Fourier transforms reported herein. Therefore the turbulence intensities and one-
dimensional spectra reported below are not suitable for use in overall energy balance
considerations or turbulence model validation. This has been discussed in detail in
Citriniti & George (1997), who show that the spatial filtering does not affect the large
scales which are of primary interest to this work.

3.3. Power spectral density

The power spectra clearly vary greatly as a function of radial position, as shown
in figure 5. On the higher speed side of the mixing layer, nearest the potential core,
at r/D = 0.15, and 0.28, where the turbulence intensity is the lowest, local peaks
are present corresponding to exit conditions. They disappear outside r/D � 0.41 as
the turbulence intensity increases. On the lower speed side of the mixing layer, the
spectra show at least one full decade of f −5/3 range denoting high Reynolds number
turbulent flow. Note that in this frequency range Taylor’s frozen field hypothesis
is applicable, so this corresponds to the k−5/3 of the inertial subrange, see George,
Beuther & Arndt (1984).

Citriniti & George (1997) showed that the long wires also affect the very low
frequencies of the one-dimensional spectra because of the removal of small scales
normally aliased into them. Nevertheless, the spectra are quite similar to these obtained
by Petersen & Samet (1988), Glauser (1987), and Citriniti & George (2000).

4. Proper orthogonal decomposition
Mathematically, the proper orthogonal decomposition (POD) consists of projecting

the random velocity field ui(x, t) onto an orthonormal coordinate system φi(x, t). The
POD is a linear procedure, and produces a basis for the modal decomposition of an
ensemble of functions, such as data obtained from experiments. It also provides the
most efficient way of capturing the dominant components of an infinite-dimensional
process with only a finite number of modes (Holmes et al. 1996; George 1988, 1999).
The projection is optimal in the sense that the first projection captures most of the
energy; or, mathematically speaking, the projection of the velocity field onto the
function φi(x, t) has to have maximal amplitude. The problem reduces to solving
the integral equation:∫

D

Rij (x, t, x′, t ′) φi(x ′, t ′) d(x ′, t ′) = λ φj (x, t), (4.1)

where Rij = ui(x, t)u∗
j (x ′, t ′) is the two-point cross-correlation tensor.
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Figure 5. Power spectral densities along a radial line at ReD= 117 600 (exit velocity of
18 m s−1), for different downstream positions: (a) x/D = 2, (b) 4, (c) 6.

The nature of the solutions to equation (4.1) depends on the domain of integration,
D, and the properties of the field itself. If the field is of finite total energy and the
kernel is Hermitian symmetric, then the solution can be found with Hilbert–Schmidt
theory, and this is what is usually referred to as the POD. The axisymmetric jet flow
field considered herein, however, is stationary in time, and homogeneous-periodic in
the azimuthal direction. As a consequence, the eigenfunctions in these coordinates
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can be easily proven to be the harmonic functions. Operationally, it is easiest to first
Fourier transform the velocity field in these particular directions to obtain the doubly
Fourier transformed field, ûi(x, r, m, f ) (where m is the azimuthal mode number and
f is the temporal frequency), then apply the Hilbert–Schmidt theory (or POD) to this
transformed field (Citriniti & George 2000).

For the single velocity component considered here, the POD integral equation at
each downstream position becomes∫

D

Rx,x(x; r, r ′, m, f )φ(n)
x (x, r ′, m, f )r ′ dr ′ = λ(n)(m, f ; x)φ(n)

x (x, r, m, f ) (4.2)

where Rx,x(x; r, r ′, m, f ) is the two-point cross-spectral tensor of the streamwise
velocity component, the λ(n)(m, f ; x) are eigenvalues (or more properly eigenspectra)
and the φ(n)

x (x, r, m, f ) are eigenfunctions for each POD mode, n, and are functions
of azimuthal mode number, m, and frequency, f , with the latter also a function of
radial direction, r . The superscript (n) anticipates that there is more than one solution
as noted below. The r in the integral is the Jacobian for the cylindrical coordinate
system, and D is in practice the radial extent for which the kernel is significantly
different from zero. Since the POD is applied here only to measurements of the
streamwise component at a given downstream position, x is only a parameter in the
equations. This decomposition at downstream ‘slices’ across the flow is referred to
as the ‘slice-POD’. The relation of this single-component POD to the full tensorial
version was considered in detail by Glauser (1987).

The Hilbert–Schmidt theory applied to equation (4.2) then yields the following:
(i) There exists not one but an infinity of solutions, but they are denumerable,

i.e. n= 1, 2, . . . . In practice the number available in an experiment is limited to the
number of radial points for which the kernel is measured.

(ii) The eigenfunctions are orthonormal and therefore form a complete set for this
space, i.e. ∫

D

φ(n)
x (x, r, m, f ) φ(p)∗

x (x, r, m, f ) r dr = δnp, (4.3)

where δnp is the Kronecker delta function.
(iii) The eigenvalues (or eigenspectra), λ(n)(m, f ; x) are ordered, i.e.

λ(1) > λ(2) > λ(3) · · · > 0, (4.4)

and their sum over all POD modes (n), azimuthal modes (m) and integral over all
frequencies (f ) is equal to the resolved streamwise kinetic energy integrated over the
cross-section:

E =
∑

n

∑
m

∫
f

λ(n)(m, f ; x) df. (4.5)

(iv) The doubly Fourier transformed random velocity component, ûx(x, r, m, f ),
can be reconstructed from the eigenfunctions, i.e.

ûx(x, r, m, f ) =

∞∑
n=1

an(m, f ; x)φ(n)
x (x, r, m, f ) (4.6)

where the random coefficients for each POD mode are functions of m and f and
given by

an(m, f ; x) =

∫
D

ûx(x, r, m, f ) φ(n)∗
x (x, r, m, f ) r dr. (4.7)
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These are uncorrelated and related to the eigenvalues by

an(m, f ; x)a∗
p(m′, f ′; x) = λ(n)(m, f ; x)δ(f ′ − f )δnpδmm′ . (4.8)

By inverse transformation it is thus possible to reconstruct, either as a whole or in
part, the instantaneous streamwise velocity component as a function of space and
time.

(v) Finally, the cross-spectral kernel, Rx,x(x; r, r ′, m, f ), can be expressed as
a bilinear combination of the eigenfunctions, φ(n)

x (x, r, m, f ), with a diagonal
decomposition of the two-point cross-spectrum, i.e.

Rx,x(x; r, r ′, m, f ) =

∞∑
n=1

λ(n)(m, f ; x)φ(n)
x (x, r, m, f ) φ(n)∗

x (x, r ′, m, f ). (4.9)

It should be noted that the actual implementation of the decomposition is
slightly altered by the presence of the Jacobian, r , in equation (4.2). Indeed, it is
more advantageous to have a Hermitian symmetric kernel (Baker 1977). It can
be made so by separating r ′ into r ′1/2 × r ′1/2, multiplying the entire equation by
r1/2, and redefining the two-point cross-spectral tensor and orthogonal function as
r1/2 Rx,x(r, r

′, m, f ; x) r ′1/2 and φx(r, m, f ; x) r1/2 respectively. This only makes the
computation easier, and does not have any influence on the results.

Appendices A and B summarize the symmetry properties of the kernel Rx,x for the
axisymmetric jet considered here. The results can be briefly summarized as follows:
the eigenspectra λ(n)(x, m, f ) are the same in all four quadrants, i.e. quadrant II
(m > 0, f < 0), quadrant III (m < 0, f < 0), and quadrant IV (m < 0, f > 0) are the
same as for quadrant I (m > 0, f > 0). The eigenfunctions differ slightly in that in
quadrants I and II they are the same while in I and III they are complex conjugates,
as they are in quadrants II and IV. Because of this, only data for m > 0, f > 0 are
presented below.

5. Eigenspectra for n=1, λ(1)(m, f ; x)

From equation (4.5), it is clear that the eigenspectra show directly how the
streamwise component of the kinetic energy is distributed with POD mode number,
n, azimuthal mode number, m, and frequency, f . For all the data sets, the first
eigenspectrum, λ(1)(m, f ; x), integrated over frequency and summed over azimuthal
modes accounts for 64.0% to 68.7% of the resolved streamwise energy.† Table 1
summarizes these results for the first three POD modes (n = 1, 2, 3). Adding the first
three POD modes provides more than 90% of the resolved portion of the kinetic
energy of the flow. This agrees well with Citriniti & George (2000) and the earlier
observations of Glauser & George (1987), both of whom found the first POD mode
to dominate the decomposition.

Since only the streamwise component of the velocity was measured, the data have
been normalized with the total resolved streamwise kinetic energy, or u2

x . Results are
indeed quite different if the data are normalized by the total kinetic energy in the

flow, u2
x + u2

r + u2
θ , or by the two components measured by cross-wires, u2

x + u2
r , as

in Glauser & George (1987) for example. For the jet mixing layer, u2
r ≈ u2

θ (they

† Note that the ‘resolved energy’ is less than the actual energy in the flow because of the removal
of small-scale energy by the long wires. Hence the percentages are higher than those based on fully
resolved measurements, such as those reported by Glauser & George (1987).
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ReD x/D λ(1) λ(1) + λ(2) λ(1) + λ(2) + λ(3)

2 66.79 84.91 94.78
3 65.55 82.99 92.80

78 400 4 68.73 86.04 93.86
5 67.98 85.62 93.64
6 65.72 83.38 92.25
2 66.13 85.21 95.15
3 64.80 82.78 92.97

117 600 4 64.30 82.09 91.90
5 64.26 82.10 91.60
6 65.32 83.03 92.07
2 66.18 85.18 95.25
3 64.43 82.41 92.74

156 800 4 63.79 81.68 91.60
5 64.03 81.90 91.45
6 65.08 82.90 91.95

Table 1. Percentage of the streamwise resolved energy per POD mode.

are exactly equal on the centreline, due to axisymmetry) and u2
x ≈ 2u2

r (as seen
approximately in measurements of Bradshaw, Ferriss & Johnson 1964; Hussain &
Clark 1981; Glauser 1987). Using these, the total energy at a cross-section can be
related to that of just the streamwise component; the results confirm to within a
few percent the agreement among the amount of energy resolved by the POD in the
previous experiments of Glauser & George (1987), Ukeiley et al. (1999), Taylor et al.
(2001), Citriniti & George (2000) and the present one.

Figure 6 presents the eigenspectra for the first POD mode as a function of frequency,
f , and azimuthal mode number, m, at ReD =117 600. Note that only a single quadrant
is shown since the others can, at least for these experiments, be determined from it (see
the Appendices). From these three-dimensional plots several trends are immediately
obvious. At x/D = 2.0, azimuthal mode-0 is spread over a band of frequencies which
ranges from about 0 to 150 Hz, but this energy in mode-0 moves to lower frequencies
as x/D increases. Corresponding to the diminution of mode-0 is the emergence of
mode-1 and mode-2. In fact, the energy in the higher azimuthal modes peaks at about
m = 6 at x/D = 2, and is concentrated at low frequencies (large streamwise spectral
wavelengths)†, but clearly moves to lower azimuthal mode numbers as x/D increases.

6. Azimuthal dependence of the eigenspectra
The dependence of the eigenspectra on azimuthal mode number and downstream

position alone is most easily seen using the normalized eigenvalue, ξ (n)(m; x), defined
as

ξ (n)(m; x) =

∫
f

λ(n)(m, f ; x) df

∑
n

∑
m

∫
f

λ(n)(m, f ; x) df

. (6.1)

† Note that Taylor’s frozen field hypothesis definitely does not apply at the lowest frequencies,
but neither are they purely temporal, so their interpretation is ambiguous.
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Figure 6(a–c). For caption see facing page.
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Figure 6. Eigenspectra for the first POD mode, λ(1)(m, f ; x), as a function of azimuthal
mode number, m, and frequency, f , for ReD = 117 500, at different downstream positions:
(a) x/D = 2, (b) 3, (c) 4, (d) 5, (e) 6.

The denominator is the total resolved streamwise turbulent kinetic energy in the
flow (see equation (4.5)). The numerator, on the other hand, is only integrated over
frequency.

The azimuthal dependence of the normalized energy distributions of the first POD
mode is presented in figure 7. As shown previously in figure 6, the azimuthal energy
distribution of the eigenspectra has a strong dependence on downstream position.
Azimuthal mode-0, ξ (1)(0; x), shown in figure 8 behaves in a manner entirely different
than the higher azimuthal modes. The zeroth azimuthal-mode, which dominated the
dynamics at x/D =3 in the Glauser (1987) and Citriniti & George (2000) experiments,
dies off rapidly downstream for all Reynolds numbers to a non-zero value that
still exists in the far jet (see figure 8 and Part 2). It is clear that the dominant
part of azimuthal mode-0 is a transient, and therefore events associated with it
in the mixing layer are not likely to characterize the turbulence in the jet far
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downstream, contrary to the suggestion of Citriniti & George (2000). Even so, since
mode-0 would be zero if the flow were homogeneous in x, this suggests that the
non-zero residual value may control (or be controlled by) the growth rate of the
far jet.

For the higher azimuthal modes (m � 1), the peak shifts to lower mode numbers,
while the amplitude actually increases with downstream distance. Note that similar
results are seen for the second POD mode, ξ (2)(m; x). By x/D = 6, the peak is
definitively at azimuthal mode-2, as first reported in Gamard et al. (2002). In Part 2
of this paper, it will be clear that there is no further evolution downstream even in
the far jet.

Ukeiley & Seiner (1998) reported a similar evolution in a much higher Mach
number axisymmetric jet. At Mach numbers of 0.3 and 0.6, the dominant azimuthal
mode was m =3 at 8 diameters downstream (Taylor et al. 2001). It seems likely that
their higher dominant mode number is due to the fact that their measurements were
still inside the potential core region, which ends farther downstream at their Mach
numbers.

George et al. (1984) and Khwaja (1981) noted that the statistical properties of
the axisymmetric jet shear layer appeared to scale in shear-layer similarity variables,
even though the equations did not admit such solutions. Figure 9 shows the near
collapse of the eigenvalues for the first two POD modes for m � 1 at all Reynolds
numbers and positions, when normalized in shear-layer variables ξ (n)(m; x)/(x/D) vs.
m x/D.

7. Frequency dependence of the eigenspectra
Experimentally, the frequency (or temporal variation) obtained by the measuring

apparatus is a time variation of the signal seen by the device. Unfortunately its
interpretation as space or time in the flow field is complicated by the fact the
turbulence is being convected by the probes while it is also evolving in time. The
so-called ‘Taylor’s frozen field hypothesis’ assumes that convection dominates the
evolution, so temporal variations can be interpreted as spatial variations. For a
variety of reasons, Taylor’s hypothesis should not be expected to be valid for the
lowest frequencies in this flow, not the least of them being they would correspond
to unphysical disturbances several metres long. Other reasons have been discussed in
detail by Wills (1964) and Lumley (1965).

Figures 10 and 11 show the frequency content of the first POD eigenspectra for
the first nine azimuthal modes at the Reynolds numbers of 117 600 and 156 800
respectively.

At x/D = 2, azimuthal mode-0 is dominant over all frequency ranges. By x/D = 4,
azimuthal mode-0 has diminished enough so that it only dominates in a band around
the Strouhal peak of the shear layer (between 0.35 and 0.5 depending on the Reynolds
number). The spectra of the remaining modes have increased only slightly, and hardly
change at all from x/D = 4 to 6. By contrast, azimuthal mode-0 continues to drop. By
x/D =6, only the lowest azimuthal modes dominate. This energy shift occurs mainly
in the lower frequency range of 0 <f < 200.

The local peak in the eigenspectra can be compared to the local peak of the
velocity spectra taken from figure 5. The Strouhal numbers, StD = f D/Uexit, based on
the frequency of the local peak, f , the jet exit diameter, D, and the exit velocity, are
plotted as a function of downstream position in figure 12. The Strouhal number peak
is clearly associated with the azimuthal mode-0 behaviour, and its disappearance in
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the velocity spectra by the end of the potential core is consistent with the decrease
of azimuthal mode-0. The Strouhal numbers decrease with increasing downstream
positions for the lower Reynolds numbers. By contrast, for the highest Reynolds
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number, they are almost constant and independent of downstream position, consistent
with the findings of Ho & Hsaio (1982).

8. The eigenfunctions
The eigenfunctions are functions of r , in addition to m, f , and x. Thus they contain

the information about how the energy is distributed radially for the various modes.
They can also be used to construct analytical models based on linear decompositions
(see Ukeiley et al. 2001, for example).

Figure 13 presents slices of the normalized eigenfunctions for azimuthal mode-0 for
the first POD mode at the frequency for which the corresponding eigenspectra peaks
(different for each configuration). There is a radical change at approximately x/D = 3,
after which all the real parts of the eigenfunctions exhibit the same behaviour.

The same slices, figure 14, show the eigenfunctions at the dominant azimuthal
non-zero mode number for each downstream position, i.e. m =6 at x/D = 2,
m = 5 at x/D =3, m =4 at x/D = 4, m =3 at x/D = 5, and m =2 at x/D = 6.
The eigenfunctions for azimuthal mode-0 resemble the linear spacewise stability
eigenfunctions reported by Michalke (1964, 1965), consistent with the idea that
azimuthal mode-0 is a convected disturbance. However, once the mean velocity
profile loses its flat region, as in the farthest position at x/D = 6, the eigenfunctions
are quite different. This will be shown in Part 2 to be in agreement with the fact that
the eigenspectra have reached a ‘far-jet’ behaviour by this position, where azimuthal
mode-1 is the convected instability, unlike the near-zero frequency peaks.

9. Reconstruction of the instantaneous velocity
To understand how the POD represents the original velocity signal, the

instantaneous velocity field was reconstructed in the same manner as Citriniti &
George (2000). These reconstructed fluctuating velocities illustrate how the dynamics
and interactions of the large-scale structure change at different downstream positions
for various Reynolds numbers.
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Using the eigenvalue distribution, the velocity signal was reconstructed according to
equations (4.6) and (4.7). Only the first POD mode (n= 1) was used for reconstruction
since it dominated the turbulence kinetic energy. In order to clarify the role of the
most energetic contributions to the flow, azimuthal mode numbers were chosen at
each location using the results of figure 6 (see caption).

The data set for animation was chosen arbitrarily as the 234th block out of 388
blocks, starting at the 1 024th data sample in the block. Each time step or index has
a real time span of 249.9 µs corresponding to the sampling frequency of 4 001.6 Hz.
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Only a few frames are presented, which have been selected from the animated movies
to describe the main characteristics of the coherent structures.

Figure 15 presents the main characteristics at x/D =2.0. The azimuthally coherent
‘volcano-like’ eruption described by Citriniti & George (2000) is clearly present
in figure 15(a), and it evolves in the same manner as they described. It
was suggested by Citriniti & George (2000) that this was the result of the
attempted leap-frogging of the azimuthally coherent vortex rings proposed by
Grinstein, Glauser & George (1995). The eruption (figure 15a) forces high-velocity
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Figure 15. Reconstructed velocity field at x/D = 2 for ReD= 117 600 using only the first
POD mode, and azimuthal mode numbers m = 0, 3, 4, 5, 6, 7. (a) tp = 1370, (b) 1386, (c) 1394.

fluid through its centre along with the remnants of mode-6 in the potential core,
while a new azimuthal mode-6 structure appears outside. The ‘volcano’ passes quickly
leaving an azimuthally coherent structure (mode-6) in the potential core. Note that
the higher modes (4 to 6) dominate the temporal pictures since they are mostly outside
the core of the flow and are therefore swept past the probes more slowly. But it is the
eruption that has most of the energy. The animation at higher Reynolds number
shows the same evolution, but with more velocity fluctuation. The flow visualizations
of Liepmann & Gharib (1992) showed coherent structures with similar characteristics
in the potential core and outside region. They also showed streamwise vortex
ribs around the volcano and azimuthal coherent structures in the braid region.
This is consistent with the idea of the higher mode structure outside being entrained
into a passing vortex ring.

While the mode-0 structure exists, the ‘volcano-like’ event shows a quasi-periodic
behaviour in time. By counting the number of frames of the reconstructed velocity
field, the passage frequency of a life-cycle of the mode-0 structure can be calculated
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Figure 16. Reconstructed velocity field at x/D = 4 for ReD= 117 600 using only the first
POD mode, and azimuthal mode numbers m= 0, 1, 2, 3, 4, 5. (a) tp = 1324, (b) 1342, (c) 1370.

using the sampling frequency. The period of this ‘volcano-like’ event is the same as the
Strouhal frequency peak of the velocity spectra (figure 12), which in turn corresponds
to the frequency peak of the azimuthal mode-0 eigenspectra. Thus, it seems reasonable
to conclude that all have a close relation to the ‘volcano-like’ eruptions which appear to
dominate the dynamics at these upstream locations.

Unlike the reconstructions at x/D = 2 and 3, those at x/D = 4 are quite different,
as shown in figure 16. The ‘volcano-like’ eruption still exists, but it is very weak. The
most evident azimuthal mode changes from mode-4 to mode-3, consistent with the
eigenspectra shown in figure 6.

At 5 diameters downstream for all Reynolds numbers, the features show
disorganized evolution, and are not periodic. Mode-0 is very small and has almost
disappeared. Unlike the volcano-like eruptions, a ‘propeller-like’ motion is observed,
which rotates (or precesses) slowly from frame to frame. By x/D = 6.0, the structure
is simpler. Mode-0 is almost gone, and only lower mode numbers are observed for
all Reynolds numbers. Azimuthal mode-2 and mode-3 appear in figure 17, showing
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Figure 17. Reconstructed velocity field at x/D = 6 for ReD= 117 600 using only the first
POD mode, and azimuthal mode numbers m = 0, 1, 2, 3, 4, 5. (a)tp = 1270, (b) 1542, (c) 1620.

quite large-scale structure. Energy shifting from one peak to another is quite obvious.
Various mode numbers are observed, but the lower mode numbers dominate the
evolution.

It is clear that the coherent features of the flow change from ‘volcano-like’ eruptions
to ‘propeller-like’ motion as the downstream distance is increased. This is consistent
with the disappearance of azimuthal mode-0 from the eigenspectra (see figures 6
and 7) and the shift of the higher mode peak to lower mode numbers (from mode-6
at x/D = 2.0 to mode-2 at x/D = 6.0). Of course, over this same span the mean
velocity profile has evolved from a near top-hat with a well-defined potential core to
an almost fully developed jet profile.

10. Summary and conclusions
The large-scale structure of an axisymmetric mixing layer was investigated using a

138 hot-wire probe array for Reynolds numbers of 78 400, 117 600, and 156 800 from
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x/D =2 to 6. From application of the POD in the radial direction, it was observed
that the first POD mode contains more than 60% of the resolved streamwise turbulent
energy at all downstream positions and Reynolds numbers. The first two POD modes
together contain more than 80%.

While the energy in azimuthal mode-0 moves to lower frequencies as x/D increases,
its total energy decreases. Thus it appears that the dominance of azimuthal mode-0
in the initial near-field region of the jet characterizes a transient process. The higher
modes have a totally different behaviour. For azimuthal mode greater than m = 0, the
energy shifts from higher modes to lower modes as x/D increases, but remains at low
frequencies. In fact, the eigenspectra collapse when scaled in shear-layer similarity
variables, i.e. λ/xU 2

0 versus f x/U0 and m x/D, exactly like the ordinary single-point
spectra.

The eigenvalues have a strong dependence on the streamwise position, x/D. Their
overall behaviour, however, bears a resemblance to those predicted from inviscid
instability theory. In particular, Batchelor & Gill (1962) show that for a top-hat
profile all modes are unstable, but mode-0 grows the fastest. Once the profile becomes
fully developed, mode-0 is stable, and higher non-zero azimuthal modes grow the
fastest. Similar conclusions were reached by Michalke (1984) as well, but for spatially
growing disturbances. These linear stability results are very much like the behaviour
of the most energetic POD modes, and even the eigenfunctions appear to be at least
qualitatively similar.

The difference in frequency range between azimuthal mode-0 and the higher modes
suggests that mode-0 is probably a spatially convected disturbance, a global mode
that can be preferentially excited at the source, while the non-zero azimuthal modes
might be local temporally growing disturbances. The completion of the evolution
to azimuthal mode-2 dominance by x/D = 6 anticipates the evolution from a state
dominated by the initial conditions to the final similarity state of the far jet (see
Part 2 of this paper). This is consistent with the fact that the dominant Strouhal
number of the velocity spectral peak in the mixing layer is seen to be closely related
to the azimuthal mode-0 behaviour. When the Strouhal peak is not seen in the
energy spectra any more, azimuthal mode-0 no longer dominates the energetics of the
flow.

The energy distribution of the first POD mode has no dependence on Reynolds
numbers over the range of these experiments. This is contrary to the suggestion
of Holmes et al. (1996) that more complicated modal structures might evolve with
increasing Reynolds number. On the other hand, this observation is consistent with
the suggestion by Glauser (1987) and Citriniti & George (2000) (who based their
arguments on the existence of a well-developed k−5/3-range in their spectral data) that
once the Reynolds number is sufficiently high, there should be no dependence.

The instantaneous fluctuating velocity field at each cross-section was reconstructed
using the eigenfunctions and coefficients obtained from the projection onto the original
instantaneous velocity measured by all of the probes (in the manner of Citriniti &
George 2000). Near the jet exit, highly organized and near-periodic evolutions of the
large-scale structures were observed. Azimuthally coherent vortex rings, the ‘volcano-
like’ eruptions identified by Citriniti & George (2000), dominate the dynamics and
the interactions of the structures until about x/D ≈ 4. The passage frequency for the
volcanic eruption reasonably matches the Strouhal frequency and the peak frequency
of azimuthal mode-0 in the range of x/D = 2 to 4. Beyond x/D ≈ 4, the ‘volcano-like’
eruptions die off rapidly, and a ‘propeller-like’ structure appears and dominates the
pattern.
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Appendix A. Symmetry considerations for statistically axisymmetric flows
without swirl

The non-swirling axisymmetric jet and the axisymmetric mixing layer from which
it evolves can be shown by experiment to satisfy to an excellent approximation
the following conditions: (i) homogeneous and periodic in the azimuthal direction,
θ; and (ii) stationary in time, t . In symbols these imply that the two-point, two-
time correlations of the velocity vector at a single downstream position, x, are
given by

〈 ui(x, r, θ, t)uj (x, r ′, θ + ϑ, t + τ )〉 = fi,j (x, r, r ′; ϑ, τ ), (A 1)

and are a function only of x, the two radial positions, r and r ′, the azimuthal
separation, ϑ , and the time delay, τ . Corresponding to the experiments of this paper,
only the streamwise component of the velocity at single downstream position will
be considered, so the subscripts will be dropped. More complicated relations apply
in general to the vector relations, and the conclusions below must be modified
accordingly.

Correlations

Because the correlations must be independent of origin in θ or t , they are invariant
to shifts of the origins by the amounts ϑ or τ respectively. Therefore the following
must also be true:

〈u(x, r, θ, t)u(x, r ′, θ + ϑ, t + τ )〉 = 〈u(x, r, θ − ϑ, t)u(x, r ′, θ, t + τ )〉 (A 2)

= 〈u(x, r, θ − ϑ, t − τ )u(x, r ′, θ, t)〉 (A 3)

= 〈u(x, r, θ, t − τ )u(x, r ′, θ + ϑ, t)〉. (A 4)

Note that it is in general not true, at least without additional assump-
tions, that 〈u(x, r, θ, t)u(x, r ′, θ + ϑ, t + τ )〉 = 〈u(x, r, θ, t)u(x, r ′, θ − ϑ, t + τ )〉 or
〈u(x, r, θ, t)u(x, r ′, θ +ϑ, t+τ )〉 = 〈u(x, r, θ, t)u(x, r ′, θ +ϑ, t −τ )〉; i.e, f (x, r, r ′, ϑ, τ ) �=
f (x, r, r ′, ϑ, −τ ) and f (x, r, r ′, ϑ, τ ) �= f (x, r, r ′, −ϑ, τ ). This can be contrasted with
the symmetries of the single-time two-point correlations or two-time single-point
correlations which are symmetrical, e.g. if r = r ′, then f (x, r, r, ϑ, 0) = f (x, r, r, −ϑ, 0)
and f (x, r, r, 0, τ ) = f (x, r, r, 0, −τ ).
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Two-point cross-spectra

Now consider the two-point cross-spectrum defined by

Rx,x(x, r, r ′; m, f ) ≡ 1

2π

∫ π

−π

dϑ

∫ ∞

−∞
dτ e−imϑ − i2πf τ 〈u(x, r, θ, t)u(x, r ′, θ + ϑ, t + τ )〉.

(A 5)

From the perspective of this paper, the question that needs to be answered is: what
is the relation of Rx,x(x, r, r ′, m, f ) to Rx,x(x, r, r ′, m, −f ), Rx,x(x, r, r ′, −m, f ), and
Rx,x(x, r, r ′, −m, −f )? Or more simply, do both negative and positive values of m

and f contain independent information, or is all the information contained in just
the positive values? Since the cross-spectra form the kernel of the POD, clearly the
question is of considerable importance.

First consider Rx,x(x, r, r ′, −m, −f ) given by

Rx,x(x, r, r ′; −m, −f ) =
1

2π

∫ π

−π

dϑ

∫ ∞

−∞
dτ e+imϑ+i2πf τ 〈u(x, r, θ, t)u(x, r ′, θ + ϑ, t + τ )〉

=
1

2π

∫ π

−π

dϑ

∫ ∞

−∞
dτ e−imϑ−i2πf τ 〈u(x, r, θ, t)u(x, r ′, θ − ϑ, t − τ )〉

=
1

2π

∫ π

−π

dϑ

∫ ∞

−∞
dτ e−imϑ−i2πf τ 〈u(x, r, θ + ϑ, t + τ )u(x, r ′, θ, t)〉

(A 6)

where the second integral results from the transformations, ϑ → −ϑ and τ → −τ ,
and the last from stationarity in time and homogeneity in θ . It follows then from the
definition of Rx,x that

Rx,x(x, r, r ′; −m, −f ) = Rx,x(x, r ′, r; m, f ). (A 7)

Alternatively, since the cross-correlation itself is real, it also follows immediately
from the definition of equation (A 5) that

Rx,x(x, r, r ′; −m, −f ) = R∗
x,x(x, r, r ′; m, f ). (A 8)

Thus the values of Rx,x in the third quadrant (m < 0, f < 0) can be found from those

in the first by simply interchanging r and r ′ of the cross-spectrum for positive values,
or by taking the complex conjugate. But how about quadrants two and four, m > 0,
f < 0 and m < 0, f > 0 respectively?

From the definition of (A 5) it follows that

Rx,x(x, r, r ′; −m, f ) =
1

2π

∫ π

−π

dϑ

∫ ∞

−∞
dτ e+imϑ−i2πf τ 〈u(x, r, θ, t)u(x, r ′, θ + ϑ, t + τ )〉

=
1

2π

∫ π

−π

dϑ

∫ ∞

−∞
dτ e−imϑ−i2πf τ 〈u(x, r, θ, t)u(x, r ′, θ − ϑ, t + τ )〉

(A 9)

where the last step follows from the change of variables ϑ → −ϑ .
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Now interchange r and r ′ and consider

Rx,x(x, r ′, r; m, f ) =
1

2π

∫ π

−π

dϑ

∫ ∞

−∞
dτ e−imϑ−i2πf τ 〈u(x, r ′, θ, t)u(x, r, θ + ϑ, t + τ )〉

=
1

2π

∫ π

−π

dϑ

∫ ∞

−∞
dτ e−imϑ−i2πf τ 〈u(x, r, θ, t + τ )u(x, r ′, θ − ϑ, t)〉

(A 10)

where the last step follows from homogeneity in θ .
It follows from this that

Rx,x(x, r ′, r; m, −f ) =
1

2π

∫ π

−π

dϑ

∫ ∞

−∞
dτ e−imϑ+i2πf τ 〈u(x, r, θ, t + τ )u(x, r ′, θ − ϑ, t)〉

=
1

2π

∫ π

−π

dϑ

∫ ∞

−∞
dτ e−imϑ−i2πf τ 〈u(x, r, θ, t − τ )u(x, r ′, θ − ϑ, t)〉

=
1

2π

∫ π

−π

dϑ

∫ ∞

−∞
dτ e−imϑ−i2πf τ 〈u(x, r, θ, t)u(x, r ′, θ − ϑ, t + τ )〉

(A 11)

where the second integral is achieved by transforming τ → −τ , and the last step
follows from stationarity in time.

But the last two integrals in equations (A 9) and (A 11) above are equal; therefore

Rx,x(x, r, r ′, −m, f ) = Rx,x(x, r ′, r, m, −f ). (A 12)

It also follows immediately from the definitions as before that

Rx,x(x, r, r ′, −m, f ) = R∗
x,x(x, r, r ′, m, −f ). (A 13)

Clearly both these indicate that if the cross-spectrum is known for m < 0, f > 0 then
the values of m > 0, f < 0 can be obtained by either interchanging r and r ′ or by
taking the complex conjugate, or vice versa.

In summary, stationarity in t and homogeneity in the azimuthal direction θ imply
that the doubly transformed cross-spectra in quadrants I (m > 0, f > 0) and III
(m < 0, f < 0) are related, and that quadrants II (m > 0, f < 0) and IV (m < 0, f > 0)
are related. Unfortunately this seems to be as far as stationarity in t and homogeneity
in θ lead: there is in general no relation between quadrants I and II (or IV).
Thus, in the absence of additional information or constraints, the cross-spectrum
Rx,x(x, r, r ′, m, f ) must be specified in at least two quadrants of m and f . An
example of such an additional constraint is given in Appendix B.

Eigenspectra and eigenfunctions

Consider the eigenvalue problem posed by∫
D

Rx,x(x; r, r ′, −m, −f )φ(n)
x (x, r ′, −m, −f )r ′ dr ′ = λ(n)(−m, −f ; x)φ(n)

x (x, r, −m, −f ).

(A 14)

But taking the complex conjugate of the entire equation and substituting
equation (A 8) for the kernel leads to∫

D

Rx,x(x; r, r ′, m, f )φ(n)∗
x (x, r ′, −m, −f )r ′ dr ′ = λ(n)(−m, −f ; x)φ(n)∗

x (x, r, −m, −f )

(A 15)
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where λ is real. But the kernel is the same as the original eigenvalue problem of
equation (4.2); therefore the solutions must be the same. It follows immediately that

λ(n)(−m, −f ; x) = λ(n)(m, f ; x), (A 16)

φ(n)
x (x, r, −m, −f ) = φ(n)∗

x (x, r, m, f ). (A 17)

Thus quadrant III (m < 0, f < 0) can be obtained from quadrant I (m > 0, f > 0), and
vice versa.

Similar considerations show that

λ(n)(−m, f ; x) = λ(n)(m, −f ; x), (A 18)

φ(n)
x (x, r, −m, f ) = φ(n)∗

x (x, r, m, −f ). (A 19)

Therefore quadrant IV can be obtained from quadrant II, and vice versa.
Unfortunately there is no general relation between I and II (or IV), at least in
the absence of additional constraints.

Appendix B. Special symmetry established by experiment
For all of the experiments reported herein it was possible to establish from the

measured cross-spectra that for m > 0, to within experimental error, the following
additional symmetry condition applied:

Rx,x(x; r, r ′, m, −f ) = Rx,x(x; r, r ′, m, f ). (B 1)

This relation does not apply to all statistically axisymmetric flows and applies only
to the jet (and perhaps not even to all jets); for example it does not apply to the
axisymmetric wake, which appears to satisfy a different condition (Johansson &
George 2004). By contrast, equations (A 7), (A 8), (A 12) and (A 13) are general and
also apply here for all values of m including m = 0.

When added to the constraints of Appendix A, it is easy using the same methodology
to show that this supplies the missing condition to obtain the cross-spectra in
quadrants II, III, and IV in terms of the information in quadrant I alone. For
example, consider the eigenvalue problem posed by∫

D

Rx,x(x; r, r ′, m, −f )φ(n)
x (x, r ′, m, −f )r ′ dr ′ = λ(n)(m, −f ; x)φ(n)

x (x, r, m, −f ). (B 2)

From equation (B 1) it follows immediately that the solutions to this equation must be
the same as for the original problem posed by equation (4.2). Therefore the following
must be true:

λ(n)(m, −f ; x) = λ(n)(m, f ; x), (B 3)

φ(n)
x (x, r, m, −f ) = φ(n)

x (x, r, m, f ). (B 4)

Thus the values in quadrant II (m > 0, f < 0) are the same as for quadrant I. It is
easy using the results of Appendix A to show that the eigenspectra must be the same
in all quadrants, while the eigenfunctions in quadrants III and IV are the complex
conjugates of those in I and II respectively. Hence only quadrant I data are shown
in the body of the paper.

Interestingly, it is also straightforward to show that equation (B 1) implies that
the two-point correlation transformed over frequency only is not symmetrical in the
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separation angle, ϑ , as commonly assumed. It can be reconstructed from the Fourier
series representation of Rx,x(x; r, r ′, ϑ, f ) as follows:

Bx,x(x; r, r ′, ϑ, f ) =

∞∑
m=−∞

e+imϑRx,x(x; r, r ′, m, f ). (B 5)

This can be rewritten as a sum over positive values of m only as

Bx,x(x, ; r, r ′, ϑ, f ) = Rx,x(x; r, r ′, 0, f )

+

∞∑
m=1

{e+imϑRx,x(x; r, r ′, m, f ) + e−imϑRx,x(x; r, r ′, −m, f )}.

(B 6)

From equations (A 13) and (B 1) it follows immediately that

Bx,x(x; r, r ′, ϑ, f ) = Rx,x(x; r, r ′, 0, f )

+

∞∑
m=1

{e+imϑRx,x(x; r, r ′, m, f ) + e−imϑR∗
x,x(x; r, r ′, m, −f )}

= Rx,x(x; r, r ′, 0, f ) +

∞∑
m=1

{
e+imϑRx,x(x; r, r ′, m, f )

+ e−imϑ R∗
x,x(x; r, r ′, m, f )}

= Rx,x(x; r, r ′, 0, f ) +

∞∑
m=1

2[Re{Rx,x(x; r, r ′, m, f )} cos mϑ

− Im{Rx,x(x; r, r ′, m, f )} sin mϑ] .
(B 7)

Clearly, Bx,x(x; r, r ′, ϑ, f ) is not an even function of ϑ , and therefore not symmetrical
in ϑ .

In conclusion it should be noted that it is not clear at the time of writing why
equation (B 1) is true. Therefore in the absence of a theoretical explanation it should
be regarded as tentative. One rationalization may be that all probes see a disturbance
at the same time, consistent with the fact that the frequency variations are primarily
due to spatial disturbances being convected by the probes. But this leaves open the
question about swirling disturbances, for which this could not be true. Or perhaps
the net effect of such swirling disturbances is to cancel out on the average, since one
sign of rotation is equally likely as the other. An important clue may lie in the fact
that the axisymmetric wake appears to satisfy a different condition, suggesting that
the unique character of each flow is at least reflected in this difference, if indeed not
determined by it.
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